Sports Betting ARM in R

Games Dataset

Below is the .R file that contains code for running the Association Rule Mining model on the games dataset and the .csv file that the code uses.

Below is the code that the ‘ARM_gbg.R’ file contains.

####################################################
###
### Association Rule Mining Examples
### This example will use the Apriori Alg.
### 
### Code courtesy of Dr. Ami Gates, CU Boulder 
####################################################
## To perform Association Rule Mining, transaction 
## data is needed. 
## MANY libraries will also be required... 
## 
## To perform association rule mining, you must have
## transaction data AND you must create a datafile
## that presents that data in whatever way your library
## expects. I will use *basket* here.
##
## 

## TO GET this code to work and to get arulesViz to work - 
## you will have to carefully and patiently do the following:

## DO these installs once
## install.packages("arules")
## For arulesViz to work on R version 3.5.x, you will
## need to first go through an installation of RTools. 
## See HOW TO above.
## Next - once the RTools exe has been downloaded and installed
## per the instructions, then, do these install.packages here in RStudio:
## install.packages("TSP")
## install.packages("data.table")
## NOTE: If you are asked if you want to INSTALL FROM SOURCE - click YES!
# install.packages("arulesViz", dependencies = TRUE)
## IMPORTANT ## arules ONLY grabs rules with ONE item on the right
## install.packages("sp")
## NOTE R V3.5.0 does not use the older
## datasets packages
## install.packages("datasets.load") - not used here
## install.packages("ggplot2") - not used here

## install.packages("dplyr", dependencies = TRUE)
## install.packages("purrr", dependencies = TRUE)
## install.packages("devtools", dependencies = TRUE)
## install.packages("tidyr")
library(viridis)
library(arules)
library(TSP)
library(data.table)
#library(ggplot2)
#library(Matrix)
library(tcltk)
library(dplyr)
library(devtools)
library(purrr)
library(tidyr)
## DO THIS ONCE
## FIRST - you MUST register and log into github
## install_github("mhahsler/arulesViz")
## RE: https://github.com/mhahsler/arulesViz

##############
## IF YOUR CODE BREAKS - TRY THIS
##
## Error in length(obj) : Method length not implemented for class rules 
## DO THIS: 
## (1) detach("package:arulesViz", unload=TRUE)
## (2) detach("package:arules", unload=TRUE)
## (3) library(arules)
## (4) library(arulesViz)
###################################################################

## To see if you have tcltk run this on the console...
# capabilities()["tcltk"]
library(arulesViz)
library(RColorBrewer)

## YOUR working dir goes here...
setwd("C:/Users/casey/OneDrive/Documents/MSDS_Courses/Spring_2023/Machine_Learning/ARM")

# -------------------------------------------------------------------------------- #
## LOAD in  and inspect data

gbg <- read.transactions("prepped_data/gbg_prepped_for_ARM.csv",
                           rm.duplicates = FALSE, 
                           format = "basket",  ##if you use "single" also use cols=c(1,2)
                           sep=",",  ## csv file
                           cols=NULL) ## The dataset has no row numbers
inspect(gbg)

# --------------------------------------------------------------------------------- #
##Use apriori to get the RULES
Frules = arules::apriori(gbg, parameter = list(support=.35, 
                                                 confidence=.5, minlen=2))
inspect(Frules)

# --------------------------------------------------------------------------------- #
## ANALYZE the RULES

## Plot of which items are most frequent
itemFrequencyPlot(gbg, topN=10, type="absolute")

## Sort rules by a measure such as conf, sup, or lift
SortedRules <- sort(Frules, by="confidence", decreasing=TRUE)
inspect(SortedRules[1:10])
(summary(SortedRules))

## Selecting or targeting specific rules with 'Under' in the left hand side
UnderRules <- apriori(data=gbg,parameter = list(supp=.000001, conf=.001, minlen=2),
                     appearance = list(lhs = 'Strong Wind', rhs="Under"),
                     control=list(verbose=FALSE))
UnderRules <- sort(UnderRules, decreasing=TRUE, by="support")
inspect(UnderRules[1])

## Selecting or targeting specific rules with 'Over' in the left hand side
OverRules <- apriori(data=gbg,parameter = list(supp=.001, conf=.9, minlen=2),
                       appearance = list(default="lhs", rhs="Over"),
                       control=list(verbose=FALSE))
OverRules <- sort(OverRules, decreasing=TRUE, by="confidence")
inspect(OverRules[1:15])

# Write the rules to a text file
#write(OverRules[1:15], file='OverRules.txt', sep= ", ", quote=FALSE)

# --------------------------------------------------------------------------- #
## Visualize RULES

subrules <- head(sort(UnderRules, by="lift"),10)
plot(subrules)

#plot(subrules, method="graph", engine="interactive")
Graph <- plot(OverRules[1:10], method="graph", engine="htmlwidget",
     title = 'Top 10 Rules Based on Confidence (lhs="Over")')

# Save the widget as an html file
htmlwidgets::saveWidget(widget = Graph,
           file = "Over_Confidence.html",
           selfcontained = TRUE)